
On the Execution Control of HLA Federations using

the SISO Space Reference FOM

Björn Möller

Pitch Technologies

Repslagaregatan 25

582 22 Linköping, Sweden

bjorn.moller@pitch.se

Alfredo Garro, Alberto Falcone

Department of Informatics, Modeling,

Electronics and Systems Engineering

(DIMES)

University of Calabria

Via P. Bucci 41C, 87036 Rende (CS), Italy

{alfredo.garro,

alberto.falcone}@dimes.unical.it

Edwin Z. Crues, Daniel E. Dexter

Simulation and Graphics Branch,

NASA Johnson Space Center

2101 NASA Parkway 77058,

Houston, Texas, USA

{edwin.z.crues,

daniel.e.dexter}@nasa.gov

Abstract— In the Space domain the High Level Architecture

(HLA) is one of the reference standard for Distributed

Simulation. However, for the different organization involved in

the Space domain (e.g. NASA, ESA, Roscosmos, and JAXA) and

their industrial partners, it is difficult to implement HLA

simulators (called Federates) able to interact and interoperate in

the context of a distributed HLA simulation (called Federation).

The lack of a common FOM (Federation Object Model) for the

Space domain is one of the main reasons that precludes a-priori

interoperability between heterogeneous federates. To fill this lack

a Product Development Group (PDG) has been recently activated

in the Simulation Interoperability Standards Organization (SISO)

with the aim to provide a Space Reference FOM (SRFOM) for

international collaboration on Space systems simulations.

Members of the PDG come from several countries and contribute

experiences from projects within NASA, ESA and other

organizations. Participants represent government, academia and

industry. The paper presents an overview of the ongoing Space

Reference FOM standardization initiative by focusing on the

solution provided for managing the execution of an SRFOM-

based Federation.

Keywords— Space, Interoperability, High Level Architecture,

Federation Object Model.

I. INTRODUCTION

The space domain is characterized by the high cost of real
equipment, dangerous scenarios, scarce training opportunities,
and emergency operations. As a consequence, simulation has
always represented a key technology exploited for supporting
space mission analysis, design and operation. In particular, due
to the increasing complexity of modern space missions, which
result from the cooperation of several public and private
organizations of different nations, distributed simulation is
becoming a fundamental asset as it allows for the combination
of heterogeneous simulation models (made by the same or
different organizations), running simulators from different
locations, and promotion of scalability, modularization and
usability (see [1], [6] for examples). In the Space domain, one
of the most popular standards for implementing distributed
simulations is the High Level Architecture (HLA) [3], an IEEE
Standard for Modeling and Simulation (M&S). However, it is
difficult to implement HLA simulators (called Federates) able

to interact and interoperate in the context of a distributed HLA
simulation (called Federation). The lack of a common FOM
(Federation Object Model) [3] for the Space domain [4], is one
of the main reasons that precludes a-priori interoperability
between heterogeneous federates, developed by the different
organizations involved in the Space domain (e.g. NASA, ESA,
Roscosmos, and JAXA) and their industrial partners.

To fill this void, a Product Development Group (PDG) has
been recently activated in the Simulation Interoperability
Standards Organization (SISO) with the aim to provide a
Space Reference FOM (SRFOM) for international
collaboration on Space systems simulations [8]. Members of
the PDG come from several countries, represent government,
academia and industry, and contribute experiences from
projects within NASA, ESA and other organizations.

The standard consists of two parts: (i) the SISO Standard
for the Space Reference FOM Federation Agreement. This is a
natural language, human readable overview, description and
specification of the FOM; (ii) The Space Reference FOM. This
is a set of computer-interpretable HLA IEEE 1516- 2010 FOM
modules (XML files), intended for consumption by HLA
runtime infrastructure and other software tools.

The first draft version of the SRFOM focuses on handling
of time and space; in particular, it provides the following: (i) a
flexible positioning system using Coordinate Reference Frames
for arbitrary bodies in space, (ii) a naming conventions for
well-known Reference Frames, (iii) definitions of common
time scales, (iv) federation agreements for common types of
time management with focus on time stepped simulation, and
(v) support for physical entities, such as space vehicles and
astronauts. A description of these first outcomes can be found
in [4] and [5]. In addition to the previously mentioned
specifications, to fully promote and support a-priori
interoperability between SRFOM-based federates, the PDG is
working on the definition of rules and guidelines for the
execution management and control of an SRFOM-based
Federation. Note that the content of this paper is based on the
current SRFOM standard draft [8]. In this context, this paper,
after an overview of the SRFOM initiative (Section II),
discusses the proposed solutions concerning the federation
executive flow (Section III), initialization (Section IV),

https://ntrs.nasa.gov/search.jsp?R=20170005623 2019-05-01T03:15:01+00:00Z

execution (Section V), and mode transitions (Section VI).
Conclusions are drawn and future work delineated in Section
VII.

II. AN OVERVIEW OF THE SPACE REFERENCE FOM

The SISO Space Reference FOM (SRFOM) standard
defines features to enable interoperability among HLA-based
simulations (federations) in the Space domain [5]. This
includes federations executing in real-time as well as
federations executing in logical-time (including as-fast-as-
possible). The main objective of the SRFOM is to support
training, analysis, mission development and engineering;
although other types of usage, like test and concept
exploration may also be supported to some degree.

The SRFOM defines a hierarchy of object and interaction
classes that are collected, according to their purposes, in
separate FOM modules. This separation provides developers
with a flexible and effective means for managing and extending
the standard (see [4], [5]). Fig. 1 shows the architecture of the
SISO Space Reference FOM along with its modules.

Fig. 1: Architecture of the SISO Space Reference FOM..

The SISO_SpaceFOM_switches_module provides

configuration settings for the Federation execution by way of
global Federation execution wide switches for Local Run-Time
Component (LRC) and RTI behavior. The IEEE 1516-2010
standard defines a set of switches that shall be set in the FOM
[3]. These switches regulate the behavior of some of the
optional actions the RTI can perform on behalf of the federate,
such as automatically requesting updates of an instance
attribute when an object instance is discovered or advising the
federates when certain events occur. To facilitate easy
replacement of these settings, the switches have been confined
to the SISO_SpaceFOM_switches_FOM module. It is expected
that federations might choose to update this module based on
their federation agreement.

The SISO_SpaceFOM_datatypes module provides the
definitions of: (i) HLA simpleDataTypes, for handling the main
scalar physical quantities, such as Angle, Mass, MassRate,
Velocity and Acceleration; (ii) HLA arrayDataTypes, for
handling vectors physical quantities, such as position, velocity
and acceleration; and, (iii) HLA fixedrecordDataTypes, for
handling the space-time coordinates and states of reference
frames. Moreover, the definition of the HLA logical timestamp
and lookahead time are also provided (both are represented as
64 bits integers: HLAinteger64Time). These data types are used
for object attributes as well as interaction parameters and adopt
the International System of Units (SI) wherever possible.

The SISO_SpaceFOM_environment_module provides the
fundamental data types used to represent the basic physical
environmental properties associated with space-based
simulations. In particular, it defines the ReferenceFrame HLA
ObjectClass that represents a fundamental concept for
representing when and where any physical entity exists in time
and space.

The SISO_Space_FOM_management module offers the
specifications for execution control and management of HLA
ObjectClass, InteractionClass and SynchronizationPoint
instances. Specifically, it defines the base set of information
necessary to coordinate federation and federate execution time
lines and execution mode transitions in a SRFOM compliant
federation execution.

The SISO_SpaceFOM_entity module provides the
definitions of a space vehicle through the definition of the
PhysicalEntity ObjectClass that represents a man-made vehicle
or a major sub-element of a man-made vehicle. The current
definition of the PhysicalEntity ObjectClass is based on the
prototype that has been used in the Simulation Exploration
Experience (SEE) project [2][7] and that is going to be
improved and extended during the standardization activity.

Start

Join Federation

Early or

Late?

Multi-Phase

Initialization
Initialization

Run Mode

Shutdown

Mode? Freeze Mode

LateEarly

Run Freeze

Shutdown

Initialization

Execution

Fig. 2. Simplified Space Reference FOM Executive Flow [8]

III. EXECUTION CONTROL OF AN SRFOM-BASED FEDERATION

Every simulation has an executive that controls the
execution of the simulation as it starts up, goes through a
defined initialization sequence, transitions into various running
states, and ultimately goes through a defined shutdown
sequence. At some level, a distributed simulation (e.g. a
federation execution) must go through analogous processes.
Interoperability between federates in a federation execution
requires not only the specification of the data exchange
between federates but also the specification of executive
behavior. With this in mind, the Space Reference FOM defines
some specifics of the execution control required for a SRFOM
compliant federate.

At the highest level, the Space Reference FOM executive
flow has four principal states: start, initialization, execution,
and shutdown (see Fig. 1). This simplified view of the Space
FOM executive architecture provides a suitable starting point
for subsequent more detailed discussions.

While the Start and Shutdown states are most likely trivial
entry and exit points. The Initialization and Execution states are
considerably more complex. The Space Reference FOM
designates the role of the Master federate as the principal
federate for controlling and coordinating the federation
execution. The Master federate makes use of three principal
HLA mechanisms to manage execution control: (i) Execution
Control Objects; (ii) Mode Transition Request Interactions; (iii)
Coordination Synchronization Points.

A. Federation Time Management

Before discussing the execution control mechanisms used
in the context of the SRFOM, it is important to recall two
principal time management concepts: 1) management of
Simulation Scenario Time (SST) using HLA time management
mechanisms and 2) management of the federation execution
with respect to the real world passage of Physical Time (PT).

Concerning the management of the Simulation Scenario
Time Management (SST), the SRFOM relies on the HLA time
management infrastructure for coordinating the SST
progression across participating federates in a given federation
execution. Federates that require time based coordination use
the HLA Time Advance Request (TAR) and Time Advance
Grant (TAG) mechanisms. This insures that all coordinated
federates move forward with a coordinated SST. This helps to
maintain consistent state information between participating
time-managed federates. However, it does not regulate how fast
the federation execution progresses with respect to PT.
Simulations that are not paced with respect to PT will run as
fast as possible (AFAP) base on the slowest executing time
managed federate and the communication latencies between
federates. The SRFOM supports two concepts for controlling
the progression of SST with respect to PT: a Pacing Federate
and Central Timing Equipment (CTE). These concepts are not
mutually exclusive.

A Pacing Federate is a federate in the federation execution
that employs some kind of timed wait loop to regulate the
progression of SST with respect to PT. This approach is often
employed through the use of the Pacing Federate’s computer
clock to “pace” the progression of SST with the computer’s
concept of the progression of PT through the use of Computer
Clock Time (CCT). The Pacing Federate employs this use of
CCT and the SST management mechanisms described above to
“pace” the federation execution.

This method is very effective in managing the real-time
progression of SST across a federation execution. However,
there are limits to how well this approach can control the
variation of SST progression with respect to PT across a
federation execution. Specifically, the federation execution will
progress in general coordination with PT but individual
federates may have variations in the actual length and timing of
each execution cycle. These variations are generally a result of
the variability of communications latencies between federates

and time management coordination implementations within the
HLA Run Time Infrastructure (RTI).

In situations where more accurate control is required for
real-time performance of individual federates, the SRFOM
supports the use of Central Timing Equipment (CTE). There
are a number of available CTE technologies (standards).
However, in general, CTE provides a highly accurate
coordinated timing mechanism for each computer connected
through the CTE. This provides each CTE equipped computer
with a commonly available and highly accurate definition of
CCT. The federate’s computer uses this CTE defined CCT to
implement a time based wait loop to control the progression of
SST with respect to PT.

B. The Execution Configuration Object (ExCO)

The Master federate is the principal control federate in the
federation execution. The Master federate is responsible for
coordinating and controlling the execution state of the
federation through the use of a single instance of a published
Execution Configuration Object named “ExCO” and a
collection of mode transition synchronization points (see
Section VI).

An ExCO, as defined in the
SISO_Space_FOM_management module (see Section II), is a
standard HLA object class which defines the base set of
parameters necessary to coordinate federation and federate
execution time lines and execution mode transitions in a
SRFOM compliant federation execution; these attributes are:

 root_reference_frame: Specifies the name of the root
reference frame in the federation execution's reference
frame tree (see [5] for a discussion on reference frames
and related data structures). This frame shall remain
fixed throughout the federation execution.

 scenario_time_epoch: This is the beginning epoch of
the federation execution expressed in Terrestrial Time
(TT), using the Truncated Julian Date (TJD) origin
(1968-05-24 00:00:00 UTC) as the TT epoch. This
simulation scenario time (SST) epoch corresponds to
HLA logical time (HLT) 0. All joining federates shall
use this time to coordinate the offset between their
simulation scenario times (SST), their simulation
elapsed times (SET) and the HLA logical time (HLT).

 current_execution_mode/next_execution_mode: This is
the current/next running state of the federation
execution in terms of a finite set of states expressed as
an ExecutionMode enumeration value.

 next_mode_scenario_time: This is the time for the next
federation execution mode change expressed as a
simulation scenario time (SST) reference. This value is
only meaningful for going into freeze; exiting freeze is
coordinated through a synchronization point
mechanism.

 next_mode_cte_time: This is the time for the next
federation execution mode change expressed as a
Central Timing Equipment (CTE) time reference. The

standard for this reference shall be defined in the
federation agreement when CTE is used.

 least_common_lookahead: This is used in the
computation to find the next HLA logical time (HLT)
boundary available to all federates in the federation
execution. This is used to synchronize federates in a
federation execution to be on a common logical time
boundary.

C. The Mode Transition Request (MTR) Interaction

The ModeTransitionRequest (MTR) interaction is used by
participating federates, that are not the Master federate, to
request a federation execution mode transition. An MTR can be
sent at anytime during initialization or execution but only
certain MTR requests are valid at certain times (see TABLE I.
). The MTR contains one parameter, the execution_mode that
can have one of the following 3 valid values:
EXEC_MODE_RUNNING, EXEC_MODE_FREEZE,
EXEC_MODE_SHUTDOWN. Of these three valid mode
requests, only 7 combinations of current mode and requested
mode are valid (see TABLE I.).

D. Coordinating Synchronization Points

The Master federate uses a defined set of synchronization
points to specify federate wide coordination points in the
executive initialization and execution process flow. The Space
Reference FOM specifies the following 6 execution control
synchronization points; 4 are used during initialization (see
Section IV) and 3 are used during execution mode transitions
(See Section VI):

 initialization_started: Used to indicate that the
initialization phase of an SRFOM compliant federation
execution has been started. This synchronization point
(sync-point) is not created until all federates required
by the master federate have joined the federation
execution. Once this occurs, the master federate
announces this sync-point for all federates that have
already joined the federation execution. All federates in
the sync-point group must achieve this sync-point prior
to proceeding with federate and federation execution
initialization.

 initialization_completed: This synchronization point
(sync-point) is registered by the federation execution
Master federate after all the early joining federates
have achieved the "initialization_started" sync-point.
This signals to any late joining federates that they can
now proceed to the current execution mode of the
federation execution. This sync-point will never be
achieved.

 objects_discovered: This synchronization point (sync-
point) is used to mark the point at which all required
objects have been discovered by all the federates taking
part in the initialization process. This is necessary to
insure the root reference frame is owned by or
discovered by the federation execution Master federate
prior to publishing and sending out the first update of
the ExCO.

 mtr_run/mtr_freeze/mtr_shutdown: These are used to
synchronize the mode transition to
EXEC_MODE_RUNNING, EXEC_MODE_FREEZE,
and EXEC_MODE_SHUTDOWN respectively. These
synchronization points (sync-points) are registered by
the federation execution Master federate upon receipt
of a valid MTR interaction after sending out the
associated ExCO update. Upon receiving the ExCO for
the mode transition and at the associated transition
time, all federates must achieve the related sync-point
prior to going into the specified mode; an exception is
represented by the transition to shutdown that does not
involve the achievement of any synchronization point
(see Section VI).

IV. THE INITIALIZATION PHASE

The complexity of an initialization process for a simulation
can range from something as simple as setting initial simulation
parameter values to the complex cyclic evaluation of initial
conditions based on an iterative determination of state
dependencies. The Space FOM initialization framework has to
have the flexibility to support from simple to complex
initialization methodologies. An overview diagram of the
SRFOM initialization specification is shown in Fig. 3.

Start

Join Federation

Determine

Role?

Master Federate

HLA Initialization

Early Joiner

HLA Initialization

Late Joiner

HLA Initialization

Epoch and Root

Frame Discovery

Epoch and Root

Frame Discovery

Epoch and Root

Frame Discovery

Multiphase

Initialization

Multiphase

Initialization

Time Management

and Synchronization

Time Management

and Synchronization

Time Management

and Synchronization

Mode Transition

Management

and Execution

Mode Transition

Response and

Execution

Mode Transition

Response and

Execution

Master Federate Late JoinerEarly Joiner

Synchronized Initialization

Fig. 3. Space Reference FOM Initialization Overview [8]

The SRFOM initialization process begins with the Start

entry point. The next step for any federate is to join the
federation execution. The SRFOM specification for joining a
federation execution is a multistep process with an iterative
component to avoid a potential race condition. A flow chart of
the Space FOM federation join process can be seen in Fig. 4.
This process starts with connecting to the HLA Run-Time
Infrastructure (RTI). Strange as it may seem, the next step is to
attempt to destroy the federation execution. This is done to
clean up any orphaned federation executions that might exist.

The next step is to attempt to create the federation execution,
ignoring a federation already exists error. The create will only
succeed for the first federate. Next, join the federation
execution. Note that there is a potential race condition between
the creation of a federation and joining. If another federate
comes in and destroys the federation execution before the
current federate joins, a “Federation Execution Does Not Exist”
exception will occur. If this occurs, the federate can loop back
to the create step and try again. Once the federate has
successfully joined the federation, the federate shall enable
asynchronous delivery.

Connect to RTI

Destroy the Federation

to cleanup an orphaned

federation execution

Create the Federation

and Ignore Federation

Execution Already Exists

Exception

Join Federation

Got

Federation

Execution Does Not

Exist Exception?

Yes

No

Enable Asynchronous

Delivery

Start

Federation Joined

Fig. 4. Join Federation Process [8]

Wait for "Required"

Federates to Join

Sync-Point

"initialization_started"

Announced?

Sync-Point

"initialization_completed"

Announced?

No

No

Register

"initialization_started",

"objects_discovered", and

Federation Specific

Multiphase Initialization Sync-

Points for

Joined Federates Only Yes Yes

Federation

Joined

Master

Initialization

Designated

Master?

No

Early Joiner

Initialization

Late Joiner

Initialization

Yes

Subscribe to MTR Interaction

Disable AUTO PROVIDE

Fig. 5. Role Determination Process [8]

The “Join Federation” step is followed by the determination

of the role of the participating federate. A flow chart of the role
determination process can be seen in Fig. 5. This step
determines if a federate is a “Master” federate (as determined
by the Federation Agreement), “Early Joiner” federate, or “Late

Joiner” federate. The role of Early Joiner versus Late Joiner
will be determined by the timing of the federate’s joining the
federation execution and the federate’s designation of either
being, or not being, a required federate. The list of required
federates shall be documented in the federation execution’s
Specific Federation Agreement. Any federate that plays a key
regulatory role in the federation execution should be a required
federate. By definition, both the Master and Pacing federates
shall be required federates.

If the federate is a required federate, then it will always be
an Early Joiner. If the federate is not a required federate but
joins into the federation execution before the Master federate
discovers the last required federate, the federate will also be an
Early Joiner. All other federates will be Late Joiners.

Once a federate has determined its role, each federate will
proceed to its designated initialization process: Master, Early
Joiner, or Late Joiner.

A. The Master Federate and Early Joiners initialization

The Master federate has special responsibilities in the
coordination and control of a Space FOM compliant federate
execution initialization process. After creating and or joining
the federation execution, the Master federate: (i) checks the
state AUTO PROVIDE attribute in the Run Time Infrastructure
(RTI), saves off the value, and then disables AUTO PROVIDE;
(ii) subscribes to the Mode Transition Request (MTR)
interaction. The Master federate then waits until all other
required federates have joined the federation execution. All
required federates and any other federates that join the
federation execution prior to the last required federate will be
designated as Early Joiner federates (see Fig. 5). The Master
federate then begins to register and achieve specific
synchronization points in a specific order to coordinate the
initialization process.

Immediately after the last required federate has joined, the
Master federate registers the “initialization_started”
synchronization point with only the currently joined federates;
these are Early Joiners. The “initialization_started”
synchronization point is used to mark the start of the
initialization process and the point from which all subsequent
joined federates are considered “late”. This eliminates a
potential race condition for joining federates. Any other
federates, not in the “initialization_started” synchronization
point set, are designated to be Late Joiners.

The Master federate also registers an “objects_discovered”
synchronization point with only the Early Joiner federates. The
“object_discovered” synchronization point is used to mark the
point at which all required objects have been discovered by all
the federates taking part in the initialization process. To support
the multiphase initialization process, the Master federate will
also register any federation execution specific multiphase
synchronization points with only the Early Joiner federates.
These synchronization points shall be documented in the
federation execution’s Specific Federation Agreement.

The next step in the Space FOM initialization process is to
setup and initialize the HLA infrastructure needed by the
Master federate to both operate as a federate and fulfill its

responsibility as the coordinating authority for the federation
execution (see Fig. 6).

The Master federate begins by waiting for the
announcement of the “initialization_started”,
“objects_discovered”, and multiphase initialization
synchronization points. The federate then sets up any needed
RTI handles. The next step is publishing the Execution Control
object (see Section III.B).

The next step is to publish and subscribe any federate
specific object classes. This will be followed by the reservation
of all federate specific object instance names, waiting for the
instance name reservation success or failure callbacks. At this
point, the federate will register the federation specific object
instances. The federate now waits for all required object
instances to be discovered. Finally, the federate achieves the
“objects_discovered” synchronization point and waits for
synchronization. This insures that all objects required by those
federates participating in early initialization have been
discovered and that those federates will receive any updates for
those object instances.

Master

Initialization

Early Joiner

Initialization

Wait for

Announcement of

"objects_discovered", and

Federation Specific Multiphase

Initialization Sync-Points

Publish and Subscribe Object

Class Attributes and Interaction

Classes

Reserve All Federate Object

Instance Names

Wait for All Federate Object

Instance Name Reservation

Success/Failure Callbacks

Register Federate Object

Instances

Wait for All Required Objects to

be Discovered

Achieve "objects_discovered"

Sync-Point and Wait for

Synchronization

Early Joiner Root

Reference Frame

Publish and Subscribe Object

Class Attributes and Interaction

Classes

Reserve All Federate Object

Instance Names

Wait for All Federate Object

Instance Name Reservation

Success/Failure Callbacks

Register Federate Object

Instances

Wait for All Required Objects to

be Discovered

Achieve "objects_discovered"

Sync-Point and Wait for

Synchronization

Master Root

Reference Frame

Setup RTI Handles Setup RTI Handles

Publish Execution Control Object

Class Attributes and Reserves

"ExCO" Instance Name

Subscribe Execution Control

Object Class Attributes

Wait for

Announcement of

"initialization_started",

"objects_discovered", and

Federation Specific Multiphase

Initialization Sync-Points

Publish MTR Interaction

Fig. 6. Master and Early Joiner HLA Initialization [8]

In order to protect against an ExCO mode transition race

condition between the Master federate publish of the ExCO and
the early joiner federates subscription to the ExCO, the Master
federate shall not send an ExCO update prior to achieving
"objects_discovered" synchronization point.

In order to prevent a potential deadlock condition and to
support shutdown at any time after the federation is
synchronized on the "objects_discovered" synchronization
point, all federates shall check for ExCO mode transitions in

any wait loops. This includes waiting for Time Advance Grant
(see Section V).

In order to prevent potentially complex mode recovery
schemes during initialization, no mode transitions other than
EXEC_MODE_SHUTDOWN are allowed prior to completion
of the early joiner initialization process (see TABLE I.).
Specifically, the Master federate shall not send an ExCO mode
transition other than EXEC_MODE_SHUTDOWN prior to the
registration of “initialization_complete” synchronization point.

The Master federate is now ready to establish the federation
execution simulation scenario time epoch and discover the
federation execution’s root reference frame (see [5]). Once
determined, the Master federate updates and publishes the
ExCO with this information. Since the Early Joiner federates
will wait on the ExCO update, the Master federate and the
Early Joiner federates should be positioned to begin the
multiphase initialization process that is a loop on a
predetermined number of data exchanges between the Master
federate and any Early Joiner federates.

Having completed multiphase initialization, the Master
federate will then setup HLA time management and
synchronize the federation execution in preparation for
transitioning to an execution state (see Fig. 7). At this point, the
Master federate will achieve and wait for the
“initialization_started” synchronization point. Now, the Master
federate registers the “initialization_complete” synchronization
point. This is a marker synchronization point. It should never
be achieved by any federate. Any Late Joiner federates that
have come in during the initialization process will get the
announcement of “initialization_complete” and be released to
start their initialization process.

Master

Final Initialization

Early Joiner

Final Initialization

Achieve "initialization_started"

Sync-Point and Wait for

Federation Synchronization

Register

"initialization_complete"

Sync-Point and Do Not Achieve or

Wait to Synchronize

Do Not Achieve or Wait to

Synchronize

"initialization_complete"

Sync-Point

Setup HLA Time ManagementSetup HLA Time Management

Achieve "initialization_started"

Sync-Point and Wait for

Federation Synchronization

Process Execution

ModeTransitionRequest

Process Execution

ExCO Update

Update "ExCO" with

Execution Mode Transition

Wait for "ExCO" Update with

Execution Mode Transition

Received MTR

Interaction?

Set "next_run_mode" to

RUN_MODE_RUNNING

Yes

No

Master

Run

Valid MTR?
No

Yes

Reenable AUTO PROVIDE if

Originally Enabled.

Fig. 7. HLA Time Management, Synchronization and Trans. to Execution [8]

 At this point, the Master federate checks for any

ModeTransitionRequests (MTRs) received during
initialization. If the MTR is valid then the Master federate

proceeds according to the request (see Section VI), else if the
MTR is not valid or no MTR is received during initialization,
the Master federate sets the “next_execution_mode” in the
ExCO to EXEC_MODE_RUNNING and updates the ExCO.

An Early Joiner federate has an initialization flow similar to
that of the Master federate. Some notable exceptions are the
processing of Mode Transition Request interactions and
publishing ExCO updates (see Fig. 6 and Fig. 7).

This marks the end of the initialization process: the Master
federate and early joiner federates will then proceed according
to the related execution mode (see Section VI).

B. Late Joiner Federates

Any federate that joins into the federation execution after
the Master federate recognizes the last required federate and
registers the “initialization_started” synchronization point is
considered a Late Joiner (see Fig. 5) and then have to wait for
the announcement of the “initialization_completed”
synchronization point. This is a marker synchronization point
that should never be achieved by any federate. Any Late Joiner
federates that have come in during the initialization process
will get the announcement of the “initialization_completed”
synchronization point and start their initialization process.

The Late Joiner initialization process is much like the Early
Joiner initialization process but without the intermediate
synchronization with the Master and there is no predefined
multiphase initialization step. This makes the Late Joiner
initialization process a shorter and simpler process flow, as
shown in Fig. 8.

Late Joiner

Initialization

Publish and Subscribe Federate

Object Class Attributes and

Interaction Classes

Reserve All Federate Object

Instance Names

Wait for All Federate Object

Instance Name Reservation

Success/Failure Callbacks

Register Federate Object

Instances

Wait for All Required Objects to

be Discovered

Setup RTI Handles

Subscribe Execution Control

Object (ExCO) Class Attributes

Wait for ExCO Discovery

Request ExCO Update

Wait for ExCO Update Setup HLA Time Management

Query GALT and

Time Advance to GALT

Process Execution

ExCO Update

ExCO Mode

Transition?

Run Mode?

Goto Run Goto Freeze Shutdown

No Yes

RUNNING

FREEZE

SHUTDOWN

Fig. 8. Late Joiner Initialization [8]

V. THE EXECUTION PHASE

Once initialization is completed, all federates transition into
one of three possible execution modes: run, freeze, or
shutdown. The general execution mode flow can be seen in Fig.
9. Note that this is a general flow and that there will be
differences between the execution flow between federates
depending on their role in the federation execution and their
capabilities. For instance, some federates might have Central
Timing Equipment (CTE) while others do not.

As with most simulation architectures, the Space FOM
execution architecture is composed of executive looping
constructs; in this case, two executive loops or modes: a
execution mode and a freeze mode. A federate exits the
execution phase by making a mode transition to shutdown.

Once a federate enters execution mode, the federate enters
into an execution loop that starts with waiting for a Time
Advance Grant (TAG) to the last Time Advance Request
(TAR) to a specific (current) federation HLA Logical Time
(HLT) that will correspond to the current Simulation Scenario
Time (SST). After receiving the TAG, the federate then
performs any federate specific computation related to a running
state. This is usually in the form of function calls (Run Jobs).
Upon completion of the current SST computations, the federate
makes a TAR to the HLT that corresponds to the next SST. If
the federate is tied to a real-time clock, like a Pacing federate,
the federate waits until the Compute Clock Time (CCT)
reaches the time corresponding to the requested SST. In this
case, the CCT may be either the computers clock or Central
Timing Equipment (CTE). Finally, the federate checks if an
ExCO update has been received with a valid mode transition
during this run loop. If so, control returns to the mode selection
process. If not, execution returns to waiting for the TAG to
begin the next loop.

Execution

Mode?

Shutdown

TAR

Process

Run Jobs

Wait for

TAG?

Wait for

Real Time?

Process

Freeze Jobs

Mode

Transition?

Mode

Transition?

No

Yes

Yes No YesNo

Process

Shutdown Jobs

ShutdownRun Freeze

Fig. 9. Space Reference FOM Execution Overview [8]

Once a federate enters freeze mode, the federate enters into
an execution loop that starts by performing any federate
specific computation related to a freeze state. The federate will
remain in freeze mode until an ExCO update has been received
and is processed to transition the federate to a different
execution mode. Note: time does not advance when in freeze
mode. However, the Computer Clock Time (CCT) will
advance. This means that the CCT reference point with respect
to the HLT and SST time lines will have to be reset. This
applies to both internal computer clocks or Central Timing
Equipment (CTE) based clocks.

Once a federate enters shutdown mode, the federate
performs any federate specific computation related to shutting
down and then terminates. There are no mode transitions from
shutdown mode.

VI. MODE TRANSITIONS

As shown in Fig. 1, an SRFOM compliant federate’s
executive state can be characterized by two principal executive
phases: initialization and execution. However, this
characterization is a little too high level for a functional
implementation. Indeed, an SRFOM compliant federate will
exist in one of five (5) executive initialization or execution
modes: uninitialized, initializing, running, freeze or shutdown.
In general, the initialization mode transitions (uninitialized and
initializing) are handled internally to each federate conditioned
upon the role of the federate (Master, Early Joiner, or Late
Joiner) and its’ progression through the initialization process.
Specifically, the transition from uninitialized through
initializing is gated by sync-points, ExCO updates and the
progression of the federation execution through the SRFOM
initialization process described in Section IV. In contrast, the
execution mode transitions (running, freeze or shutdown) can
be triggered through mode transition requests from any
participating federate in the federation execution (see Fig. 9).

Mode transitions are controlled using two principal
mechanisms: ExCO attribute updates and MTR interactions
(see Section III.B and III.C respectively). Any federate can
request a mode transition by issuing an MTR interaction
requesting a transition to another execution mode (running,
freeze or shutdown). However, the Master federate may ignore
an MTR if the federation execution state is not appropriate for
it (see TABLE I. on [8]). A Master federate thus is the only
federate that can control mode transitions using the ExCO
singleton object instance in the federation execution specifying
the mode transition that will be handled by the other federates.

TABLE I. MASTER MODE TRANSITION REQUEST VALIDATION MATRIX

MTR Interaction Mode

M
T

R
_

G
O

T
O

_
R

U
N

M
T

R
_

G
O

T
O

_
F

R
E

E
Z

E

M
T

R
_

G
O

T
O

_
S

H
U

T
D

O
W

N

ExCO Current Mode

EXEC_MODE_UNINITIALIZED ignore ignore accept

EXEC_MODE_INITIALIZING ignore accept accept

EXEC_MODE_RUNNING ignore accept accept

EXEC_MODE_FREEZE accept ignore accept

EXEC_MODE_SHUTDOWN ignore ignore ignore

VII. CONCLUSION

With reference to the ongoing SISO Space Reference FOM
(SRFOM) standardization initiative, this paper focuses on the
main issues and proposed solution for managing and
controlling an SRFOM-based federation execution. In
particular, after discussing the basic mechanisms adopted by
the standard for execution control (Execution Control Objects,
Mode Transition Request Interactions, Coordination
Synchronization Points) the executive flow of an SRFOM
based federation is presented by describing in detail the
initialization and execution phases along with execution mode
transitions. The proposed solution for an effective federation
execution control builds upon many years of simulation
experience by professionals in government organizations,
industry and academia. Early prototypes of these solutions have
been tested in the SISO/SCS programs “Simulation Exploration
Experience”. The SISO working group is going to promote and
fully test the first release of the standard in ongoing projects
involving worldwide organizations active in the Space domain
(e.g. NASA, ESA, Roscosmos, and JAXA) where the SRFOM
is expected to make collaboration politically, contractually and
technically easier and, at the end, to fully enable a-priori
interoperability in the Space domain.

ACKNOWLEDGMENT

The authors would like to thank all the members of the
SISO Space Reference FOM (SRFOM) Product Development
Group (PDG) and, in particular, Michael Madden (NASA
Langley), Alexander Vankov and Anton Skuratovskiy
(RusBITech).

REFERENCES

[1] L. Arguello, L. Dwedari, G. D. Lauderdale, A. Vankov, and P. Chliaev,
ESA-NASA Distributed Simulation Experiment: First Results and
Lessons Learned. In Proc. of the European Simulation Interoperability
Workshop (EURO-SWIG), 2001.

[2] A. Falcone, A. Garro, F. Longo, and F. Spadafora, Simulation
Exploration Experience: A Communication System and a 3D Real Time
Visualization for a Moon base simulated scenario. In Proc. of the 18th
IEEE/ACM International Symposium on Distributed Simulation and
Real Time Applications (ACM/IEEE DS-RT), pp. 113-120, IEEE
Computer Society, 2014.

[3] IEEE Standard for Modeling and Simulation (M&S) High Level
Architecture (HLA): 1516-2010 (Framework and Rules); 1516.1-2010
(Federate Interface Specification); 1516.2-2010 (Object Model Template
(OMT) Specification).

[4] B. Möller, E. Z. Crues, D. E. Dexter, A. Garro, A. Skuratovskiy, and A.
Vankov, “A First Look at the Upcoming SISO Space Reference FOM,”
In Proc. of the SISO 2016 Simulation Innovation Workshop (SIW)
(IEEE/ACM DS-RT), Orlando, Florida, USA, September 11-16, 2016.

[5] B. Möller, A. Garro, A. Falcone, E. Z. Crues, and D. E. Dexter,
“Promoting a-priori interoperability of HLA-based Simulations in the
Space domain: the SISO Space Reference FOM initiative,” In Proc. of
the 20th International Symposium on Distributed Simulation and Real
Time Applications (IEEE/ACM DS-RT), pp. 100-107, IEEE Computer
Society, 2016.

[6] L. Rabelo, S. Sala-Diakanda, J. Pastrana, et al., Simulation Modeling of
Space Missions Using the High Level Architecture. Modelling and

Simulation in Engineering, vol. 2013, Article ID 967483, 12 pages,
2013. doi:10.1155/2013/967483.

[7] Simulation Exploration Experience (SEE) project, [online], available
at http://www.exploresim.com/

[8] SISO Space Reference FOM (SRFOM) Product Development Group
(PDG) wesite, [online], available at
https://www.sisostds.org/StandardsActivities/DevelopmentGroups/SRF
OMPDGSpaceReferenceFederationObjectModel.aspx.

